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• LWIR detection  – Why so challenging, & what key parameters can we 
improve with electronic & optical engineering?

• “W”-superlattice absorber for LWIR photodiodes

• Graded-gap “W” for LWIR photodiodes

• Hybrid Photodiodes :  TSL/GG-W

• Suppression of surface currents

– Self-passivation by GG-W

– Shallow-Etch Mesa Isolation (SEMI)

OUTLINE



• Significant challenges in growth/processing of MCT and ABSLs

• Short lifetime (for thermal generation)

• Large thermal population

D*  ∝ QE/jD½          QE ≈ Ldα/(Lα+1)         

Ld = (Dτ)½ D = kBTµ/q

jD ≈ jDDiffusion + jDGR + jDTun + jDSidewall

E.g.:    jDDiff =  qLgT → qLni
2/NAτ

ni
2 = NcNvexp(-Eg/kBT)

Because thermal generation rate scales exponentially with Eg, detection is many
orders of magnitude more challenging in LWIR than NIR

G-R & tunneling currents also scale exponentially with Eg, as does sidewall leakage 

CHALLENGES OF LONG λ DETECTION
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• Ldα > Lα > 1 for high QE
• Maximize: ① α, ② µ, ③ τ, & ④ Eg
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At 300 K: >1018 worse @ 10 µm than 1 µm!



jDDiffusion =  qLgT → qLni
2/Naτ                        ni

2 = NcNvexp(-Eg/kBT)

Small Eg in absorber is fixed by λco – So at least maximize τ

Long lifetime minimizes thermal generation rate 
(& also maximizes diffusion length for high QE)

• Auger lifetime: Enhance with band-structure 
engineering

– CCCH processes strongly 
suppressed because mn ≈ mp

– Eliminate valence intersubband resonances to 
suppress CHHH & CHHL (Easier said than done  –
Band parameters not sufficiently well known)

– If further suppression is possible, ternary offers more flexibility 
than binary (whereas growth quality may favor binary)

• Shockley-Read lifetime (typically 10-100 ns): Key is high MBE quality

DIFFUSION  CURRENT: MAXIMIZE  LIFETIME
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ANTIMONIDE  “W”  DETECTORS

Type II Superlattice (T2SL) Type-II “W” Superlattice (WSL)
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Primary advantages:Primary advantages:

(A). 2D DOS for more abrupt absorption edge(A). 2D DOS for more abrupt absorption edge
(B). Heavier mass for tunneling suppression(B). Heavier mass for tunneling suppression
(C). Flexible independent control over CBO & VBO(C). Flexible independent control over CBO & VBO

Aifer et al., APL 89, 053519 (2006)



(A).  LARGE  DOS  FOR  STRONG  ABSORPTION

W-QW has much sharper absorption edge than superlat tice (Must be careful, 
because absorption over broad band often more relev ant than just at band edge)
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(B).  TUNNELING  SUPPRESSION
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p- Absorber p+

n+

jDtun ∝ g tun ∝ (mr/Eg)½exp(-Cmr
½Eg

3/2)

Similar for trap-assisted tunneling, 
but worse because:

Eg → Eg - Et

InAs/Ga(In)Sb SL typically has 
3 x larger electron mass than HgCdTe

Mass in “W” SL much larger than that, tunable 
with barrier thickness

But we can do better!



• Depletion region of ungraded p-i-n 
has very high internal fields 
(mid-104 V/cm)  – Induces 
excessive tunneling & G-R

• Grading transfers high fields to 
larger-gap region

“W”  WITH  GRADED-GAP  DEPLETION  REGION

Need to have a small gap in absorber, but not everywhere  – Since abrupt shift of Eg
would induce large barrier to minority-carrier extraction, grade the depletion region:
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Ideal grading increases CBO to 
exactly compensate internal field 
in DR  – By extending flat CB as 
far as possible, high fields occur 
only where Eg is already large

Vurgaftman et al., APL 89, 121114 (2006)
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Grading should compensate internal field in depletion region, which is determined 
by unintentional background p- doping level (pbg)

If design underestimates
actual pbg, induced barrier 
blocks collection of 
photoexcited electrons until 
reverse bias is applied

If design overestimates pbg, 
CB slopes too soon & narrow 
gap sees high internal field
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GRADING  PROFILES



(C).  INDEPENDENT  CONTROL  OVER  CBO  &  VBO

• 3 knobs (InAs, GaInSb, & AlGaInSb thicknesses) allow nearly independent control 
over CBO, Eg, & strain compensation (Impossible with 2-constituent SL or MCT)

• No need for challenging mid-growth variations of alloy composition

10 lattice-matched 
“W” regions grade Eg from 
wide-gap n+ to p- absorber 
in 10-40 nm steps
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Graded-Gap “W” Photodiode for Long-Wave 
Infrared Detection

N+ capping 
layer

nTe ≤ 1 x 1017 cm-3
GaSb:Te Substrate

“W” Transition 1

“W” wide band gap SL
Si doped (~ 0.30 µm)

InAs:Si cap (0.01 µm)

GaSb:Be (1 µm)

“W” Transition 12

“W” SL absorber (~ 4 µm)

“W” Transition 11

nBe∼ 3 x 1018 cm-3

nBe∼ 5 x 1015 cm-3

nSi∼ 4 x 1017 cm-3

Lightly doped 
substrate to 
minimize α

Grade Eg 
slowly

Lightly doped 
absorber for 

good τ

Heavily doped 
bottom contact
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Wide bandgap “W”
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GG-W  PHOTODIODES:
SUPPRESSED  DARK  CURRENTS  &  HIGH  R 0A

GGW diffusion limited well below 80K 
(Note use of RAeff = kBT/qJbias for 
GG-W operating at non-zero Vbias)

Nearly-flat I-V implies strong suppression of 
tunneling, TAT, & G-R currents in GG-W
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GG-diode results approach MCT rule07 – poised to mov e ahead

GG-W  (RAeff)  vs.  MCT
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“W”  LIMITATION  – LOWER  MOBILITY

“W” SL

NRL data confirm 
Ld > 6 µm in 
ternary p-i-n

Larger mnz in WSL suppresses tunneling, but with 
unwanted side-effect of decreasing mobility

Fix: Hybrid, with SL absorber but GG-W depletion region 
(Also reduces scattering by eliminating 2 interface s per 
period, & eliminates Al-containing layers)



Initial hybrid structures yield higher QE than GG-W  & lower dark 
current than TSLs, however QE is only marginally be tter and dark 

current characteristics inferior to GG-W

-0.8 -0.6 -0.4 -0.2 0.0

1E-4

1E-3

0.01

0.1

GGW  10.4 um

HSL 10.6, 10.3 um

 T070815 TSL    10.47um
 T070830 HSL    10.63um
 T070906 HSL    10.33um
 T070613 GGW  10.4um

78K

 

C
ur

re
nt

 d
en

si
ty

(A
/c

m
2 )

Volts

TSL 10.5 um

3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

Q
ua

nt
um

 E
ffi

ci
en

cy
 (

%
)

Wavelength(µm)

 G905W401_QE2
 G830W401_QE2
 G906W401_QE2

HSL QE @ 78K

PRELIMINARY  HYBRID  SL  PHOTODIODES

L = 4 µm

QEHSL ∼ 33% at 8µm (QEGGW < 30 %) QEHSL ∼ 33% at 8µm (QEGGW < 30 %) RAeff (HSL) ∼ 10 Ω-cm 2 

(factor of 10 lower than GG-W)
RAeff (HSL) ∼ 10 Ω-cm 2 

(factor of 10 lower than GG-W)
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RECENT  HYBRID  SL  PHOTODIODES

Recent hybrid structures also yield 
higher QE than GG-W with improved 
dark current characteristics due to 

improved designs

Recent hybrid structures also yield 
higher QE than GG-W with improved 
dark current characteristics due to 

improved designs

Thicker hole well in SL and refinement of 
bandgap grading for HSL
Thicker hole well in SL and refinement of 
bandgap grading for HSL
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78K

3000 4000 5000 6000 7000

-200

-100

0

100  Standard grade
 Faster grade
 Thicker grade

E
(m

eV
)

Z(Ang.)

RAeff(  ) = 373 Ω-cm 2

RAeff(  ) = 387 Ω-cm 2

QE ∼ 40 % at 7µm

Widen 
grading 
region Push VB 

down more 
quickly



SURFACE  CURRENT:  SELF-PASSIVATION  IN  GG-W

ρsurface = 4200 – 450,000 Ω-cm higher than for ANY earlier LWIR T2 results 
(both passivated & unpassivated), indicating self-p assivation in GG-WSLs

But it’s not enough
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LOWERING  THE  PASSIVATION  BAR:
SHALLOW-ETCH  MESA  ISOLATION  (SEMI)
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SEMI also allows 100% optical fill 
factor combined with reduced 
junction area, by relying on lateral 
diffusion of photoexcited carriers

SEMI process, combined with GG-material, completely  eliminates all 
exposure of narrow-gap regions to sidewalls

Passivation of wider-gap material much less challen ging

n/p
junction



Burying the narrow-gap region substantially 
increases the sidewall resistivity 

SEMI: EFFECTIVE  SELF-PASSIVATION
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SEMI array shows 30x dark-current 
reduction vs . deep-etched array with  

same junction area (from same wafer)

Also greater stability of 
characteristics over time

SEMI dark current scales with 
junction area, while deep-etched 

array has much larger jD

SEMI  MINI-ARRAYS: LOWER  SIDEWALL CURRENTS  

4x4 Mini-Arrays 
(40-µm pitch, Variable junction area)

process Lmesa(um) Amesa Rmesa Ipix(nA) Ri
Deep 37 1369 1.0 410 31.5
SEMI 37 1369 1.0 13 1.0
SEMI 30 900 0.7 7.6 0.6
SEMI 24 576 0.4 5.6 0.4
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GG-structures  – SEMI AND BULK LIMIT

Using SEMI to suppress surface leakage 
then push further with graded doping in 

absorber for reduced J D
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• Long-λ detection is orders of magnitude more challenging  – For best D*, maximize 
QE & minimize various dark currents by using electronic/optical engineering to 
enhance: (1) absorption, (2) mobility, (3) lifetime, & (4) energy gap 

• “W” SL combines 2D DOS for high α, large mnz for suppressed 
tunneling, & flexible independent control over CBO & VBO

• Graded-gap “W” strongly suppresses tunneling & G-R currents

• Hybrid (SL absorber + GG-W depletion region) enhances QE (Ld ≥ 6 µm) yet 
maintains good dark current characteristics

• Surface currents reduced:
– (1) Increased Eg in depletion region of GG-diodes provides self-passivation
– (2) Shallow-Etch Mesa Isolation (SEMI) + GG-diodes

• Eliminates all narrow-gap exposure to etched sidewalls
• Reduces junction area while maintaining 100% fill factor
• Mini-array testing:  Far lower surface dark currents (sometimes) 

& greater temporal stability than conventional deep etch 

To beat MCT, still need to put all the pieces toget her!

SUMMARY

-


